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ABSTRACT: In February 2009, the National Academy of Sciences published a report entitled ‘‘Strengthening Forensic Science in the United
States: A Path Forward.’’ The report notes research studies must be performed to ‘‘…understand the reliability and repeatability…’’ of comparison
methods commonly used in forensic science. Numerical classification methods have the ability to assign objective quantitative measures to these
words. In this study, reproducible sets of ideal striation patterns were made with nine slotted screwdrivers, encoded into high-dimensional feature vec-
tors, and subjected to multiple statistical pattern recognition methods. The specific methods employed were chosen because of their long peer-
reviewed track records, widespread successful use for both industry and academic applications, rely on few assumptions on the data’s underlying dis-
tribution, can be accompanied by standard confidence levels, and are falsifiable. For PLS-DA, correct classification rates of 97% or higher were
achieved by retaining only eight dimensions (8D) of data. PCA-SVM required even fewer dimensions, 4D, for the same level of performance.
Finally, for the first time in forensic science, it is shown how to use conformal prediction theory to compute identifications of striation patterns at a
given level of confidence.
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Over the last two decades, DNA profiling has become one of
the most widely applied techniques for the identification of biologi-
cal samples in forensic science. This is largely because of the vol-
umes of allele frequency data and the clear applicability of simple
statistical methods. The unparalleled success of DNA profiling is
likely responsible for the recent National Academy of Sciences’
report on the raising of standards for scientific examination of all
forms of physical evidence (e.g., tool marks, soils, dust, questioned
documents, shoe prints, fire debris, fingerprints, gunshot residue,
tire tracks, hairs, and fibers) (1). Tool mark impression evidence,
for example, has been successfully used in courts for decades, but
its examination has lacked scientific, statistical proof that would
independently corroborate conclusions based on morphology char-
acteristics (2–7). In our study, we will apply methods of statistical

pattern recognition (i.e., machine learning) to the analysis of tool
mark impressions.

The process of associating tool mark evidence to a specific tool
involves classifying the object into groups of similar objects. To
conclude that two striation patterns have a high likelihood of being
associated, a tool mark examiner usually states that the ‘‘quantity
and quality’’ of the markings were such as to allow them to prop-
erly draw their conclusion.

The Association of Firearms and Toolmark Examiners, the de
facto group that set the standards for firearm and tool mark exami-
nation, states the theory of identification as it relates to tool marks
as (2,8):

‘‘A. The theory of identification as it pertains to the comparison
of tool marks enables opinions of common origin to be made
when unique surface contours of two tool marks are in suffi-
cient agreement.’’
‘‘B. This sufficient agreement is related to significant duplica-
tion of random toolmarks by correspondence of pattern or com-
bination of patterns of surface contours.’’

‘‘a. Significance is determined by comparative examination of two
or more sets of surface contour patterns comprised of individual
peaks, ridges and furrows.’’

Impressions and striations made by tools and firearms can be
viewed as mathematical patterns composed of peaks, ridges, and fur-
rows, which we will refer to as features. Numerical classification
methods (9–11) are of particular interest because they have the poten-
tial of assigning objective quantitative measures to the words ‘‘suffi-
cient agreement’’ and ‘‘comparative examination.’’ Unfortunately,
only a few numerically based studies for tool mark and firearm
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impression ⁄ striation comparisons (mostly firearms) have appeared in
the literature (12–41). Nichols’s reviews give excellent background
and insightful overviews for most of these studies (42–44).

In 1959, Biasotti recognized the need for empirically based sta-
tistical studies on tool mark patterns (20). His study recorded the
number of matching ‘‘striations’’ between bullets fired from the
same gun and bullets fired from different guns. He parameterized
his model (now known as consecutively matching striae or the
CMS model) in terms of groups of matching ‘‘lines.’’ Biasotti (20)
defined striation as ‘‘... engravings or striations appearing on the
bullet as a result of being engraved by the individual irregularities
on characteristics of the barrel plus any foreign material present in
the barrel capable of engraving the bullet.’’ He identified groups of
matching lines between bullets in phase; matching occurred
‘‘…when the lines appear to be similar in contour and of common
origin.’’ Building on Biasotti’s work, Neel and Wells (19) have
recently published a large-scale statistical study, where they exam-
ined 4188 striated tool mark comparisons for various sized runs of
consecutive matching striations. They found very low empirical fre-
quencies for CMS runs larger than 4· if two different tools were
known to have generated the striation patterns.

One of the first efforts in the computational comparison of stri-
ated firearm data was proposed by Gardner in the late 1970s (13).
His system attempted to use the same striation data a ballistics
examiner would use and echoed much of the same ideas that were
implemented two decades later in the Integrated Ballistics Identifi-
cation System (IBIS) system marketed by Forensic Technology
Inc. Using an SEM, Gardner obtained multiple scans of land-and-
groove areas from .38 caliber bullets fired by four different revolv-
ers. Striations were quantified by comparing derivative peak
heights ⁄ depths to the derivative mean line. Gardner then employed
a heuristic probability-based formulation to generate similarity
scores between all possible comparisons of engraved areas (land-to-
land and grove-to-grove). Reasonable, correct classification rates
were obtained on the small test set used—two bullets fired from
each of three different guns.

Databases for tools and tool marks mostly came into existence
in the early 1990s (32,45–59). The IBIS system is probably the
most widely used database system for semiautomated firearm iden-
tification and functions like a computer-aided comparison micro-
scope (47). The version in widest use employs 2D gray scale
images of various striation and impression patterns on bullets and
casings and converts them into a ‘‘signature.’’ This signature is
compared against a large database of signatures collected by local,
state, and national law enforcement agencies. The image of a pat-
tern from questioned firearms evidence is ‘‘scored’’ by a system
‘‘correlation’’ server for ‘‘similarity’’ against entries in the database.
The reason the words ‘‘signature,’’ ‘‘scored,’’ ‘‘correlation,’’ and
‘‘similarity’’ appear in quotes is because Forensic Technology Inc.
does not scientifically define these very important technical terms
and because the comparison algorithms are considered trade secrets
of a private company. In 2005, a committee of the National
Research Council was assembled to assess the feasibility, accuracy,
and technical capability of a national ballistics database. The com-
mittee noted that IBIS is a tool for search, not verification (48). If
a tool mark comparison system is to evolve to meet the needs of
forensic science and be able to stand up to the Daubert challenge,
the inner workings absolutely must be public knowledge.

With the advent of confocal microscopy and laser scanners, the
acquisition of the entire 3D surface of a tool mark can be obtained.
Very recently, an excellent study by Bachrach et al. (52) appeared
where confocal microscopy was used to digitally record the surfaces
of striated tool marks made by screwdrivers and tongue and groove

pliers. The surfaces were then filtered and averaged to form a sur-
face ‘‘signature.’’ Similarity scores for all possible pairs of signatures
were generated based on the cross-correlation function and used to
produce matching and nonmatching distributions (histograms). Algo-
rithm-generated identifications were found to be highly reliable so
long as the screwdrivers’ angles of attack were consistent (angle of
attack was obviously not an issue for tongue and groove pliers).
A National Institute of Standards and Technology (NIST) study on
an automated bullet signature identification system has also recently
been published (53). The NIST scheme used the same principles as
the previous study to establish likely bullet–gun associations. This
new system is reported to have a 10% increase in accuracy over cur-
rent commercially available systems which is a marked increase.

Howitt et al. (60) recently published a model for the computation
of correspondence probabilities (i.e., ‘‘matching’’) between striation
patterns imparted on bullets fired by the same gun versus bullets
fired from different guns. Again, the authors use the same func-
tional definition of a ‘‘line’’ in a striation pattern as was given by
Biasotti. This definition makes their theory very general and
equally applicable to striation patterns imparted by actual tools, and
striation patterns found on firearms evidence. Their theory can also
take into account arbitrary magnification levels (which would be a
parameter of a comparison microscope), and the number of lines
found in a striation pattern. Output of the approach is a probability
that various CMS runs on striation patterns generated by different
sources would match purely by chance. The entire model rests on
the assumption that the possible patterns, which the lines can form,
are probabilistically independent of each other and are identically
distributed. Their study shows some evidence for this assumption.
The Howitt–Tulleners computed probability of random correspon-
dence between 2· CMS runs on bullets (called doublets in the
study) from different sources is between 0.1 and 0.16 at 20 mm
resolution (i.e., at 10–16% chance) and 0.14–0.24 at 30 mm resolu-
tion. Biasotti’s empirically derived probabilities for the same situa-
tion are 0.2–0.46 depending on whether or not the bullet is
jacketed. Results, however, are in less agreement if 3· CMS runs
(called triplets in the study) are considered (20,60). The Howitt–
Tulleners computed probability of random correspondence for this
situation is 0.003–0.005 at 20 mm resolution and 0.007–0.01 at
30 mm resolution. Biasotti’s empirically derived probabilities, how-
ever, are 0.01–0.1 depending on jacketing (20,60).

Despite these studies, there are no standard methods for the
application of probability and statistics to the analysis of tool mark
evidence. Our work is intended to help in the establishment of stan-
dard protocols. We believe that when applying statistical pattern
recognition methods to legal issues, they should rely on as few
underlying assumptions about the data (i.e., the evidence) as possi-
ble. For these reasons, we wanted to choose methods which: (i)
make few assumptions about the form of underlying statistical dis-
tributions of the data, (ii) function adequately with small or limited
data sets, and (iii) have been shown to work well on real-world
problems (e.g., in industry and medicine). Unlike past studies, we
take an entirely multivariate approach to the statistical discrimina-
tion of striated tool marks. This approach has been successfully
exploited numerous times in the forensic science literature (61–68).
We utilize two of the most successful multivariate pattern recogni-
tion methods: partial least squares discriminant analysis (PLS-DA)
and support vector machines (SVM). Both make no assumptions
about underlying probability densities, are designed to work well
with small sample sizes, and enjoy an extensive record of perfor-
mance in the literature (69,70). Standard confidence intervals (at
the 95% level) for the classification algorithms’ output (tool mark
I.D.s) are computed from conformal prediction theory (CPT) and
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reported as well. This study focuses on striated tool marks made
by screwdrivers, which can be applied in practice quickly. It is
expected that the methodology developed in this study will translate
to any kind of striated tool mark or firearm evidence.

Methodology

Nine identical high-quality Craftsman� (Sears Holding Corp.,
Hoffman Estates, IL) quarter-inch slotted screwdrivers were pur-
chased at a local hardware store. The screwdrivers, shown in
Fig. 1, were brand new and came in packages of three. The screw-
driver shafts were manufactured by drop forging blanks followed
by grinding off of resulting flashing. Subclass characteristics on the
tool’s working surface are a possibility with some manufacturing
methods, but grinding is not one of them. In general, statistical pat-
tern comparison algorithms would detect both similarities (possible
subclass characteristics) and dissimilarities (individual characteris-
tics) between sets of features for many different tool marks. How-
ever, even though some of the features making up a tool’s working
surface may be subclass characteristics, it is unlikely that the
majority of the multitudes of features used by a statistical pattern
recognition scheme are subclass in nature. If subclass characteristics
were a significant issue for a set of tools, the problem would mani-
fest itself in a study of this design by producing relatively high
error rates in the testing phase of the algorithm. We, in fact, did
not encounter this problem. However, note that any statistical pat-
tern recognition scheme should be thoroughly tested before being
put into practice. With proper validation, it is unlikely that subclass
characteristics would cause major problems with an algorithmic dis-
crimination process and go unnoticed.

The screwdrivers were used to generate multiple reproducible
striation pattern standards. For this pilot study, the striation patterns
were made by hand while holding the tip of the screwdriver paral-
lel to the striation medium surface. This was performed to intro-
duce some ‘‘casework’’ realism into patterns to test how well the
classification algorithms hold up to the variability expected from
the pattern reproduction process. A jig to hold the screwdriver
could also be used to make even more uniform patterns if desired.

Number 2 Roma Plastina modeling clay (http://www.Sculpture-
House.com, last accessed April 2010) was used as impression

medium. Figure 2 illustrates the process. Further details of striation
pattern generation are available in reference (71). The striation pat-
terns made by each of the nine screwdrivers were digitally photo-
graphed with a Nikon DSFi1 digital camera under a Nikon
SMZ1000 stereo-microscope at 20· magnification (Nikon Corpora-
tion, Tokyo Japan). The positions and widths of a small number of
striation lines ⁄ grooves were measured with a stage micrometer.
The measurements were later used to calibrate the digital image
processing program ImageJ (72). Striation patterns were generated
for only one side of each screwdriver’s working surface. A total of
75 actual patterns were recorded. Using these real striation patterns,
732 more striation patterns were simulated for testing purposes. See
the statistical methods section for simulation details.

Striation Pattern Quantification

The surface topography of a striated tool mark obviously con-
tains a tremendous amount of physical information. Fortunately, the
human mind, in particular the professional tool mark examiner’s
mind, can efficiently handle such a voluminous amount of informa-
tion. Unfortunately, computers and mathematics are not as efficient
as the human brain and they require ‘‘models’’ of physical reality
to execute their orders in a reasonable amount of time.

For the striation patterns examined in this study, the positions of
striation lines ⁄ groves measured with the stage micrometer were
used to calibrate the image processing program ImageJ (72). Dis-
tances of each line or grove from the left edge of each striation
pattern were measured to the nearest 0.05 mm. Each striation pat-
tern is no more than 7 mm (c. 0.25 in) wide. For each pattern, a
list of 140 pieces of information (7 mm ⁄ 0.05 mm slots) is created.
Each piece of information is a 1 or 0, that is, a ‘‘bit.’’ The list thus
consists of ‘‘slots’’ for information and is superimposed over each
striation pattern. A 1 is recorded in a slot of the list if a line or
grove is present or spans the slot. A 0 is recorded otherwise. The
procedure yields a 140-dimensional (140D) binary feature vector
for each pattern, which is reminiscent of a ‘‘bar-code’’ (cf., Fig. 3).
In this study, it was found that of the 140 components in the fea-
ture vector, 19 always had value 0 across all recorded striation pat-
terns. These nonvarying components were excluded and thus
feature vectors of 121D (140D)19D = 121D) were used in the sta-
tistical analyses described later.

It should be noted that from the stack of striation patterns in
Fig. 2 (rightmost picture in the figure), some of the patterns required
alignment (registration) because a striation pattern was not entirely
complete. Figure 2 (rightmost picture in figure) depicts nine regis-
tered (aligned) striation impression patterns collected using a single
screwdriver. Registration was performed by aligning the left edge
and ⁄ or an obvious groove shared between patterns generated by a
single tool. As can be seen from Fig. 2, exemplar impressions gener-
ated by a single tool contain inherent variability. Although this can
be controlled to some degree during exemplar pattern reproduction
in a controlled laboratory setting, it must be considered an unavoid-
able consequence of patterns generated during the commission of a
crime, and therefore should be represented in an exemplar database.
All data measurements made with ImageJ were preprocessed and
registered using a program written in Mathematica 7 (73). Our Math-
ematica notebooks are available upon request. A more automated
registration algorithm is in development in our laboratory.

Statistical Methods

The binary feature vectors generated from the striation patterns
were arranged into an n·p data matrix (X) for analysis:

FIG. 1—Nine quarter-inch standard slotted screwdrivers used in this
study.
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X ¼

X11 :: X1j :: X1p

: : :
Xi1 :: Xij :: Xip

: : :
Xn1 :: Xnj :: Xnp

2
66664

3
77775

where n = 75 is the number of striation patterns and p = 121 is
the number of components in each feature vector. For each Xij

Xij ¼
1 if a line=groove falls in slot j of striation pattern i
0 if a line=groove does not fall in slot j of striation pattern i

�

The symbol Xi designates row i of X and is a vector of data repre-
senting striation pattern i. Multivariate statistical methods were used

to transform the data set (X) into a new data set (Z). These
transformed variables may be used in classification algorithms
(supervised or unsupervised) to discriminate between different
screwdrivers. In this study, k = 9 different screwdrivers of the same
brand were used. The multivariate transformation analyses of data
set (X) undertaken in this study were PLS-DA and principal compo-
nent analysis (PCA). The multivariate statistical discrimination meth-
ods used in this study were PLS-DA (i.e., it is both a transformation
and a discrimination method), one-versus-one multiclass SVM, and
CPT utilizing PCA-SVM and 3-nearest neighbor (3-NN) classifiers.
Further details on the properties of PCA- and PLS-derived variables
as well as the above-stated discrimination methods are available in
references (10,70,74,75). We note, however, that none of the meth-
ods used in this study depend on the data being Gaussian.

FIG. 2—Process to generate striation pattern standards. As one can see from the figure, screwdriver number 1 was used to make nine striation pattern
standards.

FIG. 3—Graphical representations of feature vectors for two striation patterns. They are replicate pattern 3 for screwdriver #1 and replicate pattern 8 for
screwdriver #3.
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The raw data were mean-centered and variance scaled before all
transformation ⁄discrimination computations. All statistical computa-
tions were performed with the statistical software R (76).

Principal Component Analysis

PCA is a multivariate procedure that is used to reduce the
dimensionality of a data set (X) to a new data set (ZPC) of
‘‘derived variables,’’ which account for successively decreasing
amounts of variance (74,77–79). The variance order of the variables
in Z provides guidance for the reduction in the data’s dimensional-
ity while retaining an adequate representation. See references (74)
and (79) for a fuller account of the details of PCA. The native R
PCA program prcomp was used in this study (76).

Support Vector Machines

Small sample sizes are inevitable for many statistical studies of
tool marks. Using statistical learning theory and its practical appli-
cation, the SVM was developed in response to the need for reliable
statistical discriminations within small sample studies (75). SVMs
seek to determine efficient decision rules in the absence of any
knowledge of probability densities for the data by determining
maximum margins of separation (cf., Fig. 4) (69,75). This proce-
dure produces an algorithm, which determines linear decision rules
with (typically) large margins for error. In this study, a linear ker-
nel was used with the SVM algorithm. Also, the penalty parameter,
C, was found to be 10 using a standard line search (80).

The SVM methodology was originally designed to separate two
groups, but it does have several incarnations which can handle mul-
tigroup (multicategory) problems. The most popular, because it
works well in practice, is to consider all possible pairs of groups of
striation patterns and determine a two-group (binary) SVM for each
pair. Thus, if there are k samples of striation patterns generated
from k screwdrivers, k(k–1) ⁄ 2 binary SVMs are computed and
group identity of a pattern is determined by voting of the decision
rules (81). This multicategory approach to SVMs is called the one-
versus-one method and is what we use in this study. The R pack-
age kernlab was used to perform all SVM computations (82).

Partial Least Squares Discriminant Analysis

Multivariate linear regression is a method to find linear relation-
ships between dependent ‘‘response’’ variables and a data matrix of
‘‘predictor’’ variables X by exploiting the covariance between these

entities. If the response variables are coded as class labels, the
method can be used for supervised classification (i.e., discriminant
analysis) (83). PLS is a method to determine the relationship
between predictor and response variables when there are many
more predictors than samples and ⁄ or when many of the predictors
are correlated. The method determines the PLS ‘‘latent vectors’’
(LVs) analogous to principal components (PCs) from PCA. Also,
just as in PCA, the first two or three LVs can be use to make an
approximate graphical representation of the data. In this study we
used the ‘‘softmax’’ function to map output of the PLS procedure
to class assignments (i.e., striation pattern–screwdriver identifica-
tions) (84). The R packages pls and caret were used to perform
PLS-DA computations (80,84). For more of the computational
details of PLS see references (70,84).

Error Rate Analysis–Hold-One-Out Cross-Validation

An error for the computational learning methods used in this
study is defined as a misidentification of a striation pattern. There
are many methods that can be used to assess error rates for pattern
comparisons. All methods produce estimates of error rates based on
samples. The estimation is of ‘‘global’’ error rate, or how often an
algorithm would make a misidentification on a population of stria-
tion patterns it was not trained on. The simplest method to empiri-
cally estimate the error rate is resubstitution (85). This is the
application of the computed classification rules to the set of data
used to derive them. The percentage of misclassifications via the
resubstitution method is called the apparent error rate and is simply
the empirical risk, Remp. This is a biased estimate and tends to be
overly optimistic and should be corrected. One option to improve
the estimate of error rate is to use hold-one-out cross-validation
(HOO-CV) (78). This method computes the decision rules using all
but one of the tool mark patterns in the data set. The hold-one-out
procedure is repeated for each tool mark pattern in the data set,
and the results are averaged to compute an estimated error rate
(86).

Error Rate Analysis–Bootstrapping

Another improved error rate estimate is the refined bootstrap
(86,87). First B sets of bootstrap data, X* are generated by ran-
domly selecting (with replacement) n striation pattern feature vec-
tors from the original data set X. It should be noted that each
bootstrap data set contains the same number of elements (striation
pattern feature vectors) as the original data set, thus some patterns
may be repeated. The decision rules, g*, are recomputed for each
bootstrap sample and an average error rate is computed using them
on the original data as well as the bootstrapped data used to com-
pute them (86). An alternative to the refined bootstrap is the .632
bootstrap error rate estimate (87). The prediction error is more
likely to be larger for test patterns not contained in a given boot-
strap sample. Thus to give a more conservative error rate estimate,
the .632 bootstrap focuses on these larger errors. All cross-valida-
tion and bootstrap error rate estimates were computed either with
native functions in the kernlab and pls packages or with the ported
R package, bootstrap (87).

Error Rate Analysis–Conformal Prediction and Confidence
Regions

Solomonoff’s and Kolmogorov’s algorithmic theory of random-
ness is a mathematically sophisticated way to gauge the amount of
true information in a string of symbols (88). Recently, a method

FIG. 4—Graphical representation of support vector machine output for
the separation of two data sets.
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that gives confidence levels to the identification of unknown pat-
terns and control over error rates has arisen from the study of algo-
rithmic randomness (89). This method, called conformal prediction,
can be applied to any statistical pattern comparison algorithm and
holds a great deal of potential if applied to tool mark analysis. Pre-
diction regions (confidence intervals) produced by conformal pre-
diction can give a judge or jury an easy to understand measure of
reliability for tool mark pattern identification because the method
yields confidence on a scale of 0–100%.

The way the method works is actually very simple (89,90).
Given a training set of striation patterns with known identities
(called a bag) and at least one striation pattern of unknown identity,
an estimate of randomness is computed for the bags containing the
unknown striation pattern with all possible labels for its identity.
The only assumption is that the striation patterns of the training set
are drawn independently from the same, but unknown probability
distribution.

Randomness of the bag is tested in a way analogous to what is
performed in traditional hypothesis testing (89,91,92). The null
hypothesis is that unknown striation pattern x with assigned identity
label y [i.e., the pair (x,y)] belongs to the bag and does not signifi-
cantly decrease the bag’s randomness. The alternative hypothesis is
that the pair (x,y) does not belong to the bag and thus y must be a
different label than the one assigned. p-Values are computed for
randomness estimates. Thus, conformal prediction regions for tool
mark pattern identities can be thought of as generalizations of con-
fidence intervals known from textbook hypothesis testing. Tradi-
tionally, confidence intervals are computed for population
parameters (e.g., a sample average) to give an indication of the
regions where their true values may fall. Technically, the Neyman–
Pearson interpretation of (1)a)·100% confidence interval for an
estimated population parameter (here, striation pattern identities)
constructed from a random sample of a given sample size will
contain the true population parameter (1)a)·100% of the time
(90–93). The value a is called the level of significance and is the
probability that any given confidence interval constructed from a
random sample will not contain the true population parameter.

It should be noted that the null hypothesis can be accepted for
multiple label prediction regions of the striation pattern’s identity.
In such cases, the identity assignment (i.e., the prediction region) at
the (1)a)·100% confidence level is ambiguous. While multilabel
output is not wholly uninformative, ideally, the prediction region
will contain only one label with a p-value £0.05. This means that
the conformal prediction algorithm has produced a prediction
region with only one label and a confidence level of at least 95%.

p-Values for striation pattern test identities (I.D.s) are found by
computing nonconformity scores. The nonconformity score, ai, for
the ith striation pattern using one-versus-one multiclass SVMs was
computed as

ai ¼
1

k � 1

Xkðk�1Þ=2

j¼1

ki;j

where ki,j is a matrix element of an n row by k(k–1) ⁄ 2 column
matrix of Lagrange multipliers (89). The formula just sums all
the columns in this matrix and weights the resulting n-dimen-
sional vector by 1 ⁄ (k–1). The Lagrange multipliers were all
computed by the binary SVM function of kernlab (82). Because
a suitable nonconformity measure has not yet been developed
for PLS, we did not use this method with CPT. Instead 3-NN
classification, which has been shown to perform well in a num-
ber of machine learning tasks, was used (10,89,94,95). A 3-NN

nonconformity score for striation pattern i is computed by first
finding the distance matrix between all striation patterns and
selecting three closest to i with the same I.D. and the three clos-
est to i with a different I.D. The actual score is then computed
as ratio

ai ¼

P3
j¼1

distði; jÞsame I:D:

P3
j0¼1

distði; j0Þdifferent I:D:

A p-value for each possible labeling tlabi 2 {1,2,...,k} of a test
striation pattern is computed as

ptlabi ¼
#fj 2 f1; 2; :::; ng : atlabi

j � atlabi
test�patterng

n

where atlabi
j is the nonconformity score of the jth pattern when

the test pattern is labeled as screwdriver tlabi, atlabi
test�pattern is non-

conformity score of the test pattern labeled as screwdriver tlabi,
and ptlabi means the p-value of the test pattern labeled as screw-
driver tlabi (89). A set of k p-values is computed for each test
pattern, one for each possible screwdriver identity. For a chosen
significance level e (i.e., level of confidence 1)e), a 1)e confi-
dence region of labels is determined by selecting those labels of
the test pattern with p-values ‡ e. Ideally, the output confidence
region contains only one label. If a multilabel confidence region
is output, it counts as a correct I.D. if it contains the true label
of the striation pattern, although obviously it is less informative.
Empty regions can also be output if the CPT algorithm cannot
confidently identify the striation pattern. Empties automatically
count as errors (89).

Results and Discussion

Partial Least Squares Discriminant Analysis

Figure 5 shows all 75 striation patterns on the basis of the first
two LVs. The advantage of a 2D or 3D plot of the data is to give
some insight into the overall data structure, which can be instruc-
tive for judges and juries. One must also bear in mind that a good
deal of information may have to be discarded to make such plots.
This is the case for Fig. 5. The first two LVs only account for
33% of the data’s overall variance. It should be noted, however,
that a good deal of discrimination (large intergroup separation,
small intragroup separation) is already apparent between the groups
of striation patterns.

Examining Fig. 5 further, one can see that two screwdriver #3
patterns (at close to coordinate [)4, )4.5]) are clearly separated
from the other screwdriver #3 patterns. They appear as outliers in
this 2D PLS space and it is reasonable to assume that almost any
statistical discrimination algorithm will mistakenly identify them as
screwdriver #7 patterns. Their departure from the other screwdriver
#3 patterns can be explained by examining the actual physical stria-
tion patterns, which are labeled patterns 6 and 8 in Fig. 6. The
rightmost groove imparted by screwdriver #3 is highlighted in the
figure. It spans from where the right edge of the screwdriver made
contact with the clay, and across to the left about 1.2 mm
(cf., Fig. 6, pattern 3). Replicate patterns 6 and 8 are clearly
aligned with replicate pattern number 7 in Fig. 6 (note all the com-
mon lines vertically down the patterns). Note how the remaining
0.7 mm of the grove in question is missing in patterns 6 and 8,
likely caused by striking the clay surface at a slight angle. This
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grove is apparent on all of the striation patterns generated by
screwdriver #3 with the exception of patterns 6 and 8 (photographs
available on request) and its absence in these patterns is the cause
of their distance from the other screwdriver #3 patterns in Fig. 5.

Such a phenomenon may be of concern to the reader because
obviously a perpetrator of a crime will not take the time to make
sure all the striation patterns they leave are made at the same
angle! This was not a problem for the discrimination methods
used in this study. With the addition of a few more dimensions
to the data, these patterns were easily classified as stemming from

screwdriver #3 (i.e., the classification holds up to cross-validation
and bootstrapping.). Figure 7 shows that by retaining 8D PLS
space (72% variance retained), the HOO-CV error rate can be
dramatically reduced. Thus, 8D PLS space has more than enough
discrimination power to identify most of the striation patterns in
this data set. Table 1 shows the HOO-CV, refined bootstrap and
.632 bootstrap methods all estimate the global correct identifica-
tion rate at 97–98%. A 100% correct classification rate was
achieved on a randomly generated test set of consisting of 25%
of the data. Scaling up to 38D PLS space (95% variance
retained), the estimated global correct identification rates are all
nearly perfect. It should be noted that this is still a relatively low-
dimensional model considering that the raw data set is 121D.

Principal Component Analysis with Support Vector Machines

Figure 8 shows the data in the basis of the first two PCs. There
is a strong resemblance to the 2D PLS plot (Fig. 5), which is

FIG. 5—All striation patterns projected into the space of the first two
PLS latent vectors (33% variance retained). Each point represents a stria-
tion pattern. The boldfaced numbers to the left of the points tell which
screwdriver generated the pattern.

FIG. 6—Three screwdriver #3 patterns with the rightmost groove high-
lighted. The first two, pattern 6 and pattern 8, appear as outliers in this 2D
PLS space.

FIG. 7—Hold-one-out cross-validation (HOO-CV) error rates versus PLS
dimension (i.e., number of latent vectors retained). As expected, classifica-
tion error generally decreases as dimension of the space is increased.

TABLE 1—PLS correct classification rate estimates.

Data Dimension*

2D
(%)

3D
(%)

8D
(%)

38D
(%)

Method of estimation�

Apparent 48 68 100 100
Hold-one-out CV 36 61 97 100
Refined bootstrap 78 78 98 99
.632 bootstrap 37 53 98 99
Random test set� 47 71 100 100

*Data dimension is the number of latent vectors retained to represent the
data.

�The method’s estimated error rate = (100 ) correct classification rate
estimate)%.

�Preprocessing transformation computed using corresponding random
training set.
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typical. The advantage of PCA, however, is that it reduces the
dimension of the data set in a completely unsupervised way. Thus,
if natural clustering between groups of data exists in 2D or 3D
PCA space, there is strong evidence that the differences are real.
PCA, however, requires that a separate classification method be
used to numerically identify to which group a data point belongs.
While PLS is a totally supervised method, it is its own classifica-
tion method. The classification method we chose for PCA in this
study is SVMs. An SVM is a supervised identification method;
however, the procedure assumes very little about the distribution of
the data. This is quite unlike most other classification methods in
machine learning; the dropping of a distributional assumption is in
the authors’ minds, a major advantage in forensic applications.

Figure 9 shows a plot of HOO-CV classification error rate with
increasing dimension of PC space. To make this figure, a test pat-
tern is first held out, PCA followed by SVM is performed on the
remaining data, and then the held out pattern is projected and clas-
sified. This retains some noise in the test pattern to stress the
method and thus yields a higher HOO-CV error rate estimate. It is
also computationally more expensive.

First note that the error rates are lower than for PLS-DA. An
HOO-CV error rate of c. 3% is achieved with 4D for PCA (52%
variance retained) as opposed to 8D for PLS. Table 2 shows the
estimates of apparent and global correct identification rates using
PCA-SVM. For all of the global correct classification rate proce-
dures used to construct this table, PCA is performed first on the
entire data set and then hold-out or bootstrapping is applied (This
is how it would be performed in practice once an identification
model is fit). Thus, some variance in the test observations is ini-
tially removed, which is likely why the 4D HOO-CV error is
slightly lower in Table 2 compared to that seen in Fig. 9.

For reference, Fig. 10 shows the data on the basis of the first
three PCs. Even though only 33% of the variance is retained with
three PCs, the estimated correct classification rates are very good.
By 4D, they are nearly perfect. For reference, the 31D (95% vari-
ance retained) estimated global correct classification rates are

shown. All dimensions shown in Table 2 performed well on a ran-
domly chosen test set of 25% of the data.

Conformal Prediction with PCA-SVM

Table 3 gives the results for CPT utilizing PCA-SVM for classi-
fication in both the on-line and the off-line modes at the 95% level
of confidence. Columns two and three show CPT results when
applied to the 75 real striation patterns when reduced to 4D (indi-
cated as adequate for good discrimination by HOO-CV; cf., discus-
sion above) and 121D (not reduced in dimension at all, i.e., the full
data set). In the on-line mode, immediately after I.D. prediction
regions are generated by the CPT algorithm, the true I.D. of the
striation pattern being tested is fed into the computations and an
I.D. prediction region is generated for the next striation pattern to
be tested. This ‘‘on-line’’ process of continually updating the data
set used to make I.D. predictions guarantees that the CPT algorithm

FIG. 8—All striation patterns projected into the space of the first two
principal components (33% variance retained). Each point represents a stri-
ation pattern. The boldfaced numbers to the left of the points tell which
screwdriver generated the pattern.

FIG. 9—Hold-one-out cross-validation (HOO-CV) error rates versus PCA
dimension (i.e., number of principal components retained). As expected clas-
sification, error generally decreases as dimension of the space is increased.
However, the decrease is faster than for PLS.

TABLE 2—PCA-SVM correct classification rate estimates.

Data Dimension*

2D
(%)

3D
(%)

4D
(%)

31D
(%)

Method of estimation�

Apparent 87 100 100 100
Hold-one-out CV 81 97 99 100
Refined bootstrap 88 96 98 99
.632 bootstrap 81 97 98 99
Random test set� 76 94 100 100

*Data dimension is the number of principal components retained to rep-
resent the data.

�The method’s estimated error rate = (100 ) correct classification rate
estimate)%.

�Preprocessing transformation computed using corresponding random
training set.
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yields erroneous prediction regions at a level of less than or equal
to a·100%, up to small statistical fluctuation (89).

As is apparent from columns two and three of Table 3, applica-
tion of CPT to the real striation patterns produced confidence
regions containing the correct identity of the test pattern to within a
reasonable statistical fluctuation of the theoretical error rate. An
error rate of 6% was found for both 4D and 121D, which is within
statistical fluctuation of the expected 5% error rate. In other words,
incorrect 95% confidence intervals (empty or not containing the
true I.D.) were produced only about 5% of the time (89,95).

Also, prediction regions produced by CPT can be multilabel.
Such multilabel results are not counted as incorrect if they contain
the true I.D. of the striation pattern being tested. Obviously, though,
while not totally useless, correct but multilabel prediction regions

are not maximally informative. Thus, an important measure of the
CPT algorithm’s performance is also the rate at which it produces
regions with one unique I.D. and that I.D. is correct. Table 3 shows
that on-line CPT produced unique and correct I.D.s of the striation
patterns well above 90% of the time at the 95% level of confi-
dence. Such results are very rigorous numerical identifications of
striation patterns and are accompanied by a definitive level of con-
fidence. They can also be stated easily in a courtroom situation.

The original developers of CPT acknowledge that strict on-line
classification is not always realistic in practice (89,90). That is, one
cannot expect that the true label for each test striation pattern can
be produced immediately after classification occurs. To circumvent
this problem, there are three solutions. The first is to repeat the
CPT identification sequence on each test pattern, building up to it
by first classifying a fairly large sequence of randomly selected stri-
ation patterns with known labels. Essentially, this is on-line predic-
tion using many independent random samples from a large data set
augmented with one unknown striation pattern as the last pattern to
be tested. In this way, a valid confidence level is maintained for
the label set produced for the unknown pattern. A drawback to this
approach is that it is very computationally intensive. A second pos-
sibility is to use CPT in ‘‘slow teacher’’ mode, where the true iden-
tities of unknown test patterns are eventually presented to the
algorithm. This also produces a confidence level ‘‘as advertised’’
but larger statistical fluctuations in the error rate can occur for
small data sets (89,90).

The last possibility is what we pursue in this study; use the CPT
algorithm in the ‘‘off-line’’ mode, where the same sequence of stri-
ation patterns with known identities is used to predict identities of
a set of unknown patterns. CPT in the off-line mode can no longer
theoretically guarantee that the (1)a)·100% confidence regions
produced are erroneous a·100% of the time. However, despite this
fact, it has been shown empirically that off-line mode CPT confi-
dence region error rates actually do remain close to a·100% (96).
Table 3 shows the off-line performance of CPT with PCA-SVM
classification. Results are indeed commensurate with CPT run in
the on-line mode, that is, only about 5% of the striation patterns
were incorrectly identified. Also correct, unique label prediction
regions were produced c. 90% of the time or higher. Computations,
however, were much faster in off-line mode.

Conformal Prediction with k-nearest Neighbors

While a nonconformity measure for PLS-DA which can be used
with CPT is imminent, none has yet been released in the literature.
Thus, we employed an alternative classification method which has
been extensively shown in the literature to perform well when com-
bined with CPT, k-nearest neighbors (89,90,95). Table 4 shows the
95% confidence CPT results using 3-NN for classification in both
the on-line and the off-line modes. Again, the error rates are all on
or close to 5%. It should be noted that a 0% error rate for 4D 3-
NN CPT classification on the real striation patterns is a bit optimis-
tic (cf., Table 4 column two). The uniqueness and efficiency of the
prediction regions produced by the algorithm run in both modes
are consistently c. 90% or more as was the case for PCA-SVM.
Again, this means that most of the time CPT produced a 95% con-
fidence interval with only one I.D. for the test pattern and that I.D.
was correct.

Conclusion

The intention of this study was to show that it is possible to
associate relatively flat ideal striation patterns with a ‘‘scraping’’

FIG. 10—All striation patterns projected into the space of the first three
principal components (44% variance retained). Each point represents a stri-
ation pattern. The boldfaced numbers to the left of the points tell which
screwdriver generated the pattern. Cf. Table 2 for correct identification
rates of striation patterns in this space.

TABLE 3—95% Confidence prediction results using PCA-SVM
classification.

Data Dimension*

4D�,�

(%)
121D�

(%)

On-line mode
% Error 6 6
% Unique and correct I.D. produced 94 94
% Efficiency 100 100
% Empty intervals 6 6

Off-line mode
% Error 0 6
% Unique and correct I.D. produced 100 88
% Efficiency 100 94
% Empty intervals 0 6

PCs, principal components.
*Data dimension is the number of PCs retained to represent the data.

121D is the full dimensionality of the data set.
�Estimated minimal dimension to adequately represent the striation pat-

tern data.
�Results based on a random c. 75%:25% randomized split of the real stri-

ation pattern data into training ⁄ test sets (58 training patterns ⁄ 17 test
patterns).
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type tool using objective numerical measures of similarity, error
rate, and confidence. The criteria of selection for the statistical
methods used in this study were that they have a peer-reviewed
track record, a high rate of success in the fields in which they have
been applied, and that they are relatively free of many of the
underlying assumptions that typically underlie comparison methods
in statistics (e.g., assumed parametric distributions, dichotomous
decisions). PLS-DA was able to differentiate striation patterns made
by screwdrivers at or higher than a 97% correct classification rate
(£3% error rate) with 8D feature vectors. PCA-SVM showed com-
parable high performance with only 4D feature vectors. CPT,
which has grown out of Solomonoff’s and Kolmogorov’s algorith-
mic theory of randomness, can in fact be used to control identifica-
tion error rates. For the first time, in forensic science, we used
CPT to produce tool mark identifications (conformal prediction
regions) at the 95% level of confidence. As is advertised by the
theory, error rates were always 5% to within a small statistical fluc-
tuation. Uniquely labeled and correct conformal prediction regions
were produced at or greater than 90% of the time using CPT in
both on-line and off-line modes.

Our sample size for this pilot study was necessarily small; how-
ever, the results strongly indicate the feasibility of using machine
learning techniques to identify tool marks. Studies are currently
under way to drastically increase the sample size, vary the angle at
which the tool strikes the impression media, use incomplete stria-
tion patterns (more akin to what a tool mark examiner encounters
in practice), and most importantly use 3D metrological instrumenta-
tion and software to carry out the same set of tasks. Also, the tech-
niques presented in this study could be extended to striation
patterns found on firearms evidence. Last, the authors would be
happy to share the data set and the Mathematica and R software
written by them for this study, upon request.
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